Puoi chiedere a un modello Gemini di analizzare i file immagine che fornisci in linea (codificati in base64) o tramite URL. Quando utilizzi Vertex AI in Firebase, puoi effettuare questa richiesta direttamente dalla tua app.
Con questa funzionalità puoi, ad esempio:
- Creare sottotitoli codificati o rispondere a domande sulle immagini
- Scrivi una breve storia o una poesia su un'immagine
- Rileva gli oggetti in un'immagine e restituisci le coordinate dei relativi riquadri di delimitazione
- Etichettare o classificare un insieme di immagini in base al sentiment, allo stile o ad altre caratteristiche
Vai agli esempi di codice Vai al codice per le risposte in streaming
Consulta altre guide per opzioni aggiuntive per lavorare con le immagini Genera output strutturato Chat con più turni Genera immagini |
Prima di iniziare
Se non l'hai ancora fatto, consulta la
guida introduttiva, che descrive come configurare il progetto Firebase, collegare l'app a Firebase, aggiungere l'SDK, inizializzare il servizio Vertex AI e creare un'istanza GenerativeModel
.
Per testare e eseguire l'iterazione sui prompt e persino per ottenere uno snippet di codice generato, ti consigliamo di utilizzare Vertex AI Studio.
Inviare file di immagini (codificati in base64) e ricevere testo
Prima di provare questo sample, assicurati di aver completato la sezione Prima di iniziare di questa guida.
Puoi chiedere a un modello Gemini di
generare testo tramite prompt con testo e immagini, fornendo il mimeType
di ogni
file di input e il file stesso. Trova
requisiti e consigli per i file di input
più avanti in questa pagina.
Swift
Puoi chiamare
generateContent()
per generare testo da input multimodali di testo e immagini.
Input di un singolo file
import FirebaseVertexAI
// Initialize the Vertex AI service
let vertex = VertexAI.vertexAI()
// Create a `GenerativeModel` instance with a model that supports your use case
let model = vertex.generativeModel(modelName: "gemini-2.0-flash")
guard let image = UIImage(systemName: "bicycle") else { fatalError() }
// Provide a text prompt to include with the image
let prompt = "What's in this picture?"
// To generate text output, call generateContent and pass in the prompt
let response = try await model.generateContent(image, prompt)
print(response.text ?? "No text in response.")
Input di più file
import FirebaseVertexAI
// Initialize the Vertex AI service
let vertex = VertexAI.vertexAI()
// Create a `GenerativeModel` instance with a model that supports your use case
let model = vertex.generativeModel(modelName: "gemini-2.0-flash")
guard let image1 = UIImage(systemName: "car") else { fatalError() }
guard let image2 = UIImage(systemName: "car.2") else { fatalError() }
// Provide a text prompt to include with the images
let prompt = "What's different between these pictures?"
// To generate text output, call generateContent and pass in the prompt
let response = try await model.generateContent(image1, image2, prompt)
print(response.text ?? "No text in response.")
Kotlin
Puoi chiamare
generateContent()
per generare testo da input multimodali di testo e immagini.
Input di un singolo file
// Initialize the Vertex AI service and create a `GenerativeModel` instance
// Specify a model that supports your use case
val generativeModel = Firebase.vertexAI.generativeModel("gemini-2.0-flash")
// Loads an image from the app/res/drawable/ directory
val bitmap: Bitmap = BitmapFactory.decodeResource(resources, R.drawable.sparky)
// Provide a prompt that includes the image specified above and text
val prompt = content {
image(bitmap)
text("What developer tool is this mascot from?")
}
// To generate text output, call generateContent with the prompt
val response = generativeModel.generateContent(prompt)
print(response.text)
Input di più file
Per Kotlin, i metodi in questo SDK sono funzioni sospese e devono essere chiamati da un ambito coroutine.// Initialize the Vertex AI service and create a `GenerativeModel` instance
// Specify a model that supports your use case
val generativeModel = Firebase.vertexAI.generativeModel("gemini-2.0-flash")
// Loads an image from the app/res/drawable/ directory
val bitmap1: Bitmap = BitmapFactory.decodeResource(resources, R.drawable.sparky)
val bitmap2: Bitmap = BitmapFactory.decodeResource(resources, R.drawable.sparky_eats_pizza)
// Provide a prompt that includes the images specified above and text
val prompt = content {
image(bitmap1)
image(bitmap2)
text("What is different between these pictures?")
}
// To generate text output, call generateContent with the prompt
val response = generativeModel.generateContent(prompt)
print(response.text)
Java
Puoi chiamare
generateContent()
per generare testo da input multimodali di testo e immagini.
ListenableFuture
.
Input di un singolo file
// Initialize the Vertex AI service and create a `GenerativeModel` instance
// Specify a model that supports your use case
GenerativeModel gm = FirebaseVertexAI.getInstance()
.generativeModel("gemini-2.0-flash");
GenerativeModelFutures model = GenerativeModelFutures.from(gm);
Bitmap bitmap = BitmapFactory.decodeResource(getResources(), R.drawable.sparky);
// Provide a prompt that includes the image specified above and text
Content content = new Content.Builder()
.addImage(bitmap)
.addText("What developer tool is this mascot from?")
.build();
// To generate text output, call generateContent with the prompt
ListenableFuture<GenerateContentResponse> response = model.generateContent(content);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
@Override
public void onSuccess(GenerateContentResponse result) {
String resultText = result.getText();
System.out.println(resultText);
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
}, executor);
Input di più file
// Initialize the Vertex AI service and create a `GenerativeModel` instance
// Specify a model that supports your use case
GenerativeModel gm = FirebaseVertexAI.getInstance()
.generativeModel("gemini-2.0-flash");
GenerativeModelFutures model = GenerativeModelFutures.from(gm);
Bitmap bitmap1 = BitmapFactory.decodeResource(getResources(), R.drawable.sparky);
Bitmap bitmap2 = BitmapFactory.decodeResource(getResources(), R.drawable.sparky_eats_pizza);
// Provide a prompt that includes the images specified above and text
Content prompt = new Content.Builder()
.addImage(bitmap1)
.addImage(bitmap2)
.addText("What's different between these pictures?")
.build();
// To generate text output, call generateContent with the prompt
ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
@Override
public void onSuccess(GenerateContentResponse result) {
String resultText = result.getText();
System.out.println(resultText);
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
}, executor);
Web
Puoi chiamare
generateContent()
per generare testo da input multimodali di testo e immagini.
Input di un singolo file
import { initializeApp } from "firebase/app";
import { getVertexAI, getGenerativeModel } from "firebase/vertexai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Vertex AI service
const vertexAI = getVertexAI(firebaseApp);
// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(vertexAI, { model: "gemini-2.0-flash" });
// Converts a File object to a Part object.
async function fileToGenerativePart(file) {
const base64EncodedDataPromise = new Promise((resolve) => {
const reader = new FileReader();
reader.onloadend = () => resolve(reader.result.split(',')[1]);
reader.readAsDataURL(file);
});
return {
inlineData: { data: await base64EncodedDataPromise, mimeType: file.type },
};
}
async function run() {
// Provide a text prompt to include with the image
const prompt = "What's different between these pictures?";
const fileInputEl = document.querySelector("input[type=file]");
const imagePart = await fileToGenerativePart(fileInputEl.files[0]);
// To generate text output, call generateContent with the text and image
const result = await model.generateContent([prompt, imagePart]);
const response = result.response;
const text = response.text();
console.log(text);
}
run();
Input di più file
import { initializeApp } from "firebase/app";
import { getVertexAI, getGenerativeModel } from "firebase/vertexai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Vertex AI service
const vertexAI = getVertexAI(firebaseApp);
// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(vertexAI, { model: "gemini-2.0-flash" });
// Converts a File object to a Part object.
async function fileToGenerativePart(file) {
const base64EncodedDataPromise = new Promise((resolve) => {
const reader = new FileReader();
reader.onloadend = () => resolve(reader.result.split(',')[1]);
reader.readAsDataURL(file);
});
return {
inlineData: { data: await base64EncodedDataPromise, mimeType: file.type },
};
}
async function run() {
// Provide a text prompt to include with the images
const prompt = "What's different between these pictures?";
// Prepare images for input
const fileInputEl = document.querySelector("input[type=file]");
const imageParts = await Promise.all(
[...fileInputEl.files].map(fileToGenerativePart)
);
// To generate text output, call generateContent with the text and images
const result = await model.generateContent([prompt, ...imageParts]);
const response = result.response;
const text = response.text();
console.log(text);
}
run();
Dart
Puoi chiamare
generateContent()
per generare testo da input multimodali di testo e immagini.
Input di un singolo file
import 'package:firebase_vertexai/firebase_vertexai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Vertex AI service and create a `GenerativeModel` instance
// Specify a model that supports your use case
final model =
FirebaseVertexAI.instance.generativeModel(model: 'gemini-2.0-flash');
// Provide a text prompt to include with the image
final prompt = TextPart("What's in the picture?");
// Prepare images for input
final image = await File('image0.jpg').readAsBytes();
final imagePart = InlineDataPart('image/jpeg', image);
// To generate text output, call generateContent with the text and image
final response = await model.generateContent([
Content.multi([prompt,imagePart])
]);
print(response.text);
Input di più file
import 'package:firebase_vertexai/firebase_vertexai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Vertex AI service and create a `GenerativeModel` instance
// Specify a model that supports your use case
final model =
FirebaseVertexAI.instance.generativeModel(model: 'gemini-2.0-flash');
final (firstImage, secondImage) = await (
File('image0.jpg').readAsBytes(),
File('image1.jpg').readAsBytes()
).wait;
// Provide a text prompt to include with the images
final prompt = TextPart("What's different between these pictures?");
// Prepare images for input
final imageParts = [
InlineDataPart('image/jpeg', firstImage),
InlineDataPart('image/jpeg', secondImage),
];
// To generate text output, call generateContent with the text and images
final response = await model.generateContent([
Content.multi([prompt, ...imageParts])
]);
print(response.text);
Scopri come scegliere un modello e, facoltativamente, una località appropriata per il tuo caso d'uso e la tua app.
Visualizza la risposta in streaming
Prima di provare questo esempio, assicurati di aver completato la sezione Prima di iniziare di questa guida.
Puoi ottenere interazioni più rapide non aspettando l'intero risultato della generazione del modello, ma utilizzando lo streaming per gestire i risultati parziali.
Per riprodurre in streaming la risposta, chiama generateContentStream
.
Requisiti e consigli per i file immagine di input
Consulta "File di input supportati e requisiti per Vertex AI Gemini API" per informazioni dettagliate su quanto segue:
- Diverse opzioni per fornire un file in una richiesta (in linea o utilizzando l'URL o l'URI del file)
- Requisiti e best practice per i file immagine
Tipi MIME di immagini supportati
Gemini I modelli multimodali supportano i seguenti tipi MIME di immagini:
Tipo MIME immagine | Gemini 2.0 Flash | Gemini 2.0 Flash‑Lite |
---|---|---|
PNG - image/png |
||
JPEG - image/jpeg |
||
WebP - image/webp |
Limiti per richiesta
Non esiste un limite specifico al numero di pixel di un'immagine. Tuttavia, le immagini più grandi vengono ridimensionate e riempite per adattarsi a una risoluzione massima di 3072 x 3072 mantenendo le proporzioni originali.
Di seguito è riportato il numero massimo di file immagine consentiti in una richiesta di prompt:
- Gemini 2.0 Flash e Gemini 2.0 Flash‑Lite: 3000 immagini
Cos'altro puoi fare?
- Scopri come contare i token prima di inviare prompt lunghi al modello.
- Configura Cloud Storage for Firebase in modo da poter includere file di grandi dimensioni nelle richieste multimodali e avere una soluzione più gestita per fornire file nei prompt. I file possono includere immagini, PDF, video e audio.
- Inizia a pensare alla preparazione per la produzione, inclusa la configurazione di Firebase App Check per proteggere il Gemini API da abusi da parte di clienti non autorizzati. Inoltre, assicurati di consultare l'elenco di controllo per la produzione.
Provare altre funzionalità
- Crea conversazioni a più turni (chat).
- Genera testo da prompt di solo testo.
- Genera output strutturato (ad esempio JSON) da prompt di testo e multimodali.
- Genera immagini da prompt di testo.
- Utilizza le chiamate di funzione per collegare i modelli generativi a sistemi e informazioni esterni.
Scopri come controllare la generazione di contenuti
- Comprendi la progettazione dei prompt, tra cui le best practice, le strategie e i prompt di esempio.
- Configura i parametri del modello, ad esempio la temperatura e il numero massimo di token di output (per Gemini) o le proporzioni e la generazione di persone (per Imagen).
- Utilizza le impostazioni di sicurezza per regolare la probabilità di ricevere risposte che potrebbero essere considerate dannose.
Scopri di più sui modelli supportati
Scopri i modelli disponibili per vari casi d'uso e le relative quote e prezzi.Inviare un feedback sulla tua esperienza con Vertex AI in Firebase