Criar conversas com vários turnos (chat) usando a API Gemini

Com o Gemini API, você pode criar conversas de formato livre em vários turnos. O SDK Vertex AI in Firebase simplifica o processo gerenciando o estado da conversa. Portanto, ao contrário do generateContent() (ou generateContentStream()), você não precisa armazenar o histórico de conversas por conta própria.

Antes de começar

Se ainda não tiver feito isso, conclua o guia de início, que descreve como configurar seu projeto do Firebase, conectar seu app ao Firebase, adicionar o SDK, inicializar o serviço Vertex AI e criar uma instância GenerativeModel.

Enviar uma solicitação de comando de chat

Para criar uma conversa multiturno (como um chat), comece inicializando o chat chamando startChat(). Em seguida, use sendMessage() para enviar uma nova mensagem do usuário, que também anexa a mensagem e a resposta ao histórico de chat.

Há duas opções possíveis para role associado ao conteúdo de uma conversa:

  • user: o papel que fornece as instruções. Esse valor é o padrão para chamadas para sendMessage(), e a função gera uma exceção se uma função diferente for transmitida.

  • model: o papel que fornece as respostas. Esse papel pode ser usado ao chamar startChat() com history existente.

Swift

Chame startChat() e sendMessage() para enviar uma mensagem a um novo usuário:

import FirebaseVertexAI

// Initialize the Vertex AI service
let vertex = VertexAI.vertexAI()

// Create a `GenerativeModel` instance with a model that supports your use case
let model = vertex.generativeModel(modelName: "gemini-2.0-flash")

// Optionally specify existing chat history
let history = [
  ModelContent(role: "user", parts: "Hello, I have 2 dogs in my house."),
  ModelContent(role: "model", parts: "Great to meet you. What would you like to know?"),
]

// Initialize the chat with optional chat history
let chat = model.startChat(history: history)

// To generate text output, call sendMessage and pass in the message
let response = try await chat.sendMessage("How many paws are in my house?")
print(response.text ?? "No text in response.")

Kotlin

Chame startChat() e sendMessage() para enviar uma mensagem a um novo usuário:

No Kotlin, os métodos neste SDK são funções de suspensão e precisam ser chamados de um escopo de corrotina.
// Initialize the Vertex AI service and create a `GenerativeModel` instance
// Specify a model that supports your use case
val generativeModel = Firebase.vertexAI.generativeModel("gemini-2.0-flash")

// Initialize the chat
val chat = generativeModel.startChat(
  history = listOf(
    content(role = "user") { text("Hello, I have 2 dogs in my house.") },
    content(role = "model") { text("Great to meet you. What would you like to know?") }
  )
)

val response = chat.sendMessage("How many paws are in my house?")
print(response.text)

Java

Chame startChat() e sendMessage() para enviar uma mensagem a um novo usuário:

Em Java, os métodos neste SDK retornam um ListenableFuture.
// Initialize the Vertex AI service and create a `GenerativeModel` instance
// Specify a model that supports your use case
GenerativeModel gm = FirebaseVertexAI.getInstance()
        .generativeModel("gemini-2.0-flash");
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

// (optional) Create previous chat history for context
Content.Builder userContentBuilder = new Content.Builder();
userContentBuilder.setRole("user");
userContentBuilder.addText("Hello, I have 2 dogs in my house.");
Content userContent = userContentBuilder.build();

Content.Builder modelContentBuilder = new Content.Builder();
modelContentBuilder.setRole("model");
modelContentBuilder.addText("Great to meet you. What would you like to know?");
Content modelContent = userContentBuilder.build();

List<Content> history = Arrays.asList(userContent, modelContent);

// Initialize the chat
ChatFutures chat = model.startChat(history);

// Create a new user message
Content.Builder messageBuilder = new Content.Builder();
messageBuilder.setRole("user");
messageBuilder.addText("How many paws are in my house?");

Content message = messageBuilder.build();

// Send the message
ListenableFuture<GenerateContentResponse> response = chat.sendMessage(message);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
    @Override
    public void onSuccess(GenerateContentResponse result) {
        String resultText = result.getText();
        System.out.println(resultText);
    }

    @Override
    public void onFailure(Throwable t) {
        t.printStackTrace();
    }
}, executor);

Web

Chame startChat() e sendMessage() para enviar uma mensagem a um novo usuário:

import { initializeApp } from "firebase/app";
import { getVertexAI, getGenerativeModel } from "firebase/vertexai";

// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
  // ...
};

// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);

// Initialize the Vertex AI service
const vertexAI = getVertexAI(firebaseApp);

// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(vertexAI, { model: "gemini-2.0-flash" });

async function run() {
  const chat = model.startChat({
    history: [
      {
        role: "user",
        parts: [{ text: "Hello, I have 2 dogs in my house." }],
      },
      {
        role: "model",
        parts: [{ text: "Great to meet you. What would you like to know?" }],
      },
    ],
    generationConfig: {
      maxOutputTokens: 100,
    },
  });

  const msg = "How many paws are in my house?";

  const result = await chat.sendMessage(msg);

  const response = await result.response;
  const text = response.text();
  console.log(text);
}

run();

Dart

Chame startChat() e sendMessage() para enviar uma nova mensagem de usuário:

import 'package:firebase_vertexai/firebase_vertexai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';

await Firebase.initializeApp(
  options: DefaultFirebaseOptions.currentPlatform,
);

// Initialize the Vertex AI service and create a `GenerativeModel` instance
// Specify a model that supports your use case
final model =
      FirebaseVertexAI.instance.generativeModel(model: 'gemini-2.0-flash');

final chat = model.startChat();
// Provide a prompt that contains text
final prompt = [Content.text('Write a story about a magic backpack.')];

final response = await chat.sendMessage(prompt);
print(response.text);

Saiba como escolher um modelo e, opcionalmente, um local adequado para seu caso de uso e app.

Transmitir a resposta

Conclua a seção Antes de começar deste guia antes de testar este exemplo.

É possível conseguir interações mais rápidas ao não esperar o resultado completo da geração do modelo e usar o streaming para processar resultados parciais. Para transmitir a resposta, chame sendMessageStream().



O que mais você pode fazer?

Testar outros recursos

Saiba como controlar a geração de conteúdo

Também é possível testar comandos e configurações de modelo usando Vertex AI Studio.

Saiba mais sobre os modelos compatíveis

Saiba mais sobre os modelos disponíveis para vários casos de uso e as cotas e o preço.


Enviar feedback sobre sua experiência com o Vertex AI in Firebase